Q.
Assertion (A) : If $sin^{-1} x + sin^{-1}y + sin^{-1}z = \frac{3\pi}{2}$,then
$\frac{3 \displaystyle\sum_{r = 1}^{2008}(x^{2008r} + y^{2008 r})}{2008 \sum x^{2008} y^{2008}}$ is $2$
Reason (R) : $sin^{-1} x + sin^{-1}y + sin^{-1}z = \frac{3\pi}{2}$, is possible only if $x = y = z = 1$.
Inverse Trigonometric Functions
Solution: