Q.
Assertion (A) : If $S_{n}$ denotes the sum of $n$ terms of a series given by $S_{n} = \frac{n \left(n +1\right) \left(n +2\right)}{6} \forall n \ge1$ then $\lim_{n\to\infty}\sum\limits ^{n}_{r=1} \frac{1}{t_{r}} =4$
Reason (R) : $t_{n} = S_{n} - S_{n -1}$
Sequences and Series
Solution: