Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion (A) : If $\sqrt{4 \sin^4 \theta + \sin^2 2 \theta} + 4 \cos^2 \left( \frac{\pi}{4} - \frac{\theta}{2} \right) = 2 $ then $\theta$ lies in 3rd quadrant or 4th quadrant .
Reason (R) : $\sqrt{\sin^2 \theta } = \sin \theta$

AP EAMCETAP EAMCET 2019

Solution:

Given, $\sqrt{4 \sin ^{4} \theta+\sin ^{2} 2 \theta}+4 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)=2$
$=\sqrt{4 \sin ^{4} \theta+4 \sin ^{2} \theta \cos ^{2} \theta}+2\left\{1+\cos 2\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right\}=2$
$=\sqrt{4 \sin ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}+2(1+\sin \theta)=2$
$=\sqrt{4 \sin ^{2} \theta}+2+2 \sin \theta=2$
$\Rightarrow |2 \sin \theta|+2 \sin \theta=0$
$ \Rightarrow \sin \theta<0$
So, $\theta$ lies in $3$ rd or $4$ th quadrant.