Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion (A) : A function $y = f(x)$ defined by $x^2 - cot^{-1}y = \pi$ then domain of $f(x) = R$.
Reason (R) : $cot^{-1} y \in (0, \pi)$

Relations and Functions - Part 2

Solution:

From given, $x^2 - cot^{-1} y = \pi$
$\Rightarrow x^2 - \pi = cot^{-1} y$
$\Rightarrow 0 < x^2 - \pi < \pi \,\,(\because cot^{-1} y \in (0, \pi))$
$\Rightarrow \pi < x^2 < 2\pi$
$\Rightarrow x \in (-\sqrt{2\pi}, - \sqrt{\pi}) \cup (\sqrt{\pi}, \sqrt{2\pi})$
$\Rightarrow $ Assertion (A) is false but Reason (R) is true.