Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. As shown in figure, a two slit arrangement with a source which emits unpolarised light. $P$ is a polariser with axis whose direction is not given. If $I_0$ is the intensity of the principal maxima when no polariser is present, calculate in the present case, the intensity of the principal maxima as well as of the first minima.
image

Wave Optics

Solution:

Without $P$:
$A= A_{\bot} +A_{||}$.
$A_{\bot}= A^{1}_{\bot} +A^{2}_{\bot} = A^{0}_{\bot} sin \left(kx -\omega t\right) + A^{0}_{\bot} sin\left(kx -\omega t +\phi\right)$
$A_{\left|\right|}$$= A_{\left|\right|}^{1}+A^{2}_{\left|\right|} = A_{\left|\right|}^{0} \left[ sin\left(kx-\omega t\right)+sin\left(kx-\omega t +\phi\right)\right] $
where $A^{0}_{\bot}, A^{0}_{||}$ are the amplitudes of either of the beam in $\bot$ and $||$ polarizations.
$\therefore $ Intensity $= \left\{\left|A^{0}_{\bot}\right|^{2} +\left|A_{\left|\right|}^{0}\right|^{2}\right\}[sin^{2}\left(kx -\omega t\right)$
$\left(1+cos^{2}\phi+2sin \phi\right)+sin^{2}\left(kx-\omega t\right)sin^{2}\phi]_{\text average}$
$ =\left\{\left|A^{0}_{\bot}\right|^{2} +\left|A_{\left|\right|}^{0}\right|^{2}\right\}\left(\frac{1}{2}\right)\cdot2\left(1+cos\phi\right)$
$ = 2 \left|A^{0}_{\bot}\right|^{2}\left(1+cos\phi\right), since \left|A_{\bot}^{0}\right|_{average} = \left|A^{0}_{\left|\right|}\right|_{average} $
With $P: $
Assume $A^{2}_{\bot}$ is blocked :
Intensity $= \left(A^{1}_{\left|\right|} + A^{2}_{\left|\right|}\right)^{2} + \left(A^{1}_{\bot}\right)^{2}$
$ = \left|A^{0}_{\bot}\right|^{2}\left(1+cos\phi\right) +\left|A^{0}_{\bot }\right|^{2} . \frac{1}{2} $
$ (I_{0} =4\left|A^{0}_{\bot }\right|^{2} $= Intensity without polariser at principal maxima )
Intensity at first maxima with polariser
$=\left|A_{\bot}^{0}\right|^{2} \left(2+\frac{1}{2}\right) $
$ = \frac{5}{8}I_{0}$
Intensity at first minima with polariser,
$ \left|A_{\bot }^{0}\right|^{2} \left(1-1\right) +\frac{\left|A_{\bot }^{0}\right|^{2}}{2}$
$ = \frac{I_{0}}{8}$