Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\arg \bar{ z }+\arg z ; z \neq 0$ is equal to :

Complex Numbers and Quadratic Equations

Solution:

Let $z=r(\cos \theta+i \sin \theta)$
Then $r=|z|$ and $\theta=\arg (z)$
Now $z=r(\cos \theta+i \sin \theta)$
$\Rightarrow \bar{z}=r(\cos \theta-i \sin \theta)$
$=r[\cos (-\theta)+i \sin (-\theta)]$
$\therefore \arg (\bar{z})=-\theta$
$ \Rightarrow \arg (\bar{z})=-\arg (z)$
$\Rightarrow \arg (\bar{z})+\arg (z)=0$