Q.
Area of triangle whose vertices are $\left(a, a^{2}\right),\left(b, b^{2}\right)$ and ($c, c^{2}$ ) is $\frac{1}{2},$ and area of another triangle whose vertices are $\left(p, p^{2}\right),\left(q, q^{2}\right)$ and $\left(r, r^{2}\right)$ is $4$, then the value of
$\begin{vmatrix}\left(1+ap\right)^{2}&\left(1+bp\right)^{2}&\left(1+cp\right)^{2}\\ \left(1+aq\right)^{2}&\left(1+bq\right)^{2}&\left(1+cq\right)^{2}\\ \left(1+ar\right)^{2}&\left(1+br\right)^{2}&\left(1+cr\right)^{2}\end{vmatrix}$ is
Determinants
Solution: