Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Area of the smaller region bounded by $x^{2} + y^{2} = 9$ and the line $x = 1$ is

Application of Integrals

Solution:

We have, $x^{2}+y^{2}=9 \quad\ldots\left(i\right)$
a circle with centre $(0,0)$ and radius $3$ and line $x = 1\quad\left(ii\right)$
Required area = area of shaded region
$A=2\left[\int\limits_{1}^{3}\sqrt{9-x^{2}} dx\right]$

$=2\left[\frac{x}{2}\sqrt{9-x^{2}}+\frac{9}{2}sin^{-1}\frac{x}{3}\right]_{1}^{3}$

$=2\left[\frac{9}{2}sin^{-1}\frac{3}{3}-\frac{1}{2}\sqrt{8}-\frac{9}{2}sin^{-1}\frac{1}{3}\right]$
image
$=-\sqrt{8}+9\left(sin^{-1}-sin^{-1}\frac{1}{3}\right)$

$=\left(9 sec^{-1}3-\sqrt{8}\right)$ sq. units