Thank you for reporting, we will resolve it shortly
Q.
Area of the region bounded by $y=|x-1|$ and $y=1$ is
Application of Integrals
Solution:
We have, $y = x - 1$, if $x - 1 \ge 0$
$y = - x + 1$ , if $x - 1< 0$
Required area = area of shaded region
$A=\int\limits_{0}^{2}1 dx-\left[\int\limits_{0}^{1}\left(1-x\right)dx+\int\limits_{1}^{2}\left(x-1\right)dx\right]$