Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm and a temperature of $27^{\circ} C$. After some oxygen is withdrawn from the cylinder, the pressure drops to 11 atm and its temperature drops to $17^{\circ} C$. Estimate the mass of oxygen taken out of the cylinder $\left(R=8.3 \,J \,mole ^{-1} K ^{-1}\right.$ molecular mass of $\left. O _{2}=32\right)$

Kinetic Theory

Solution:

$n_{1}=\frac{P_{1} V_{1}}{R T_{1}}=\frac{(15 \,atm )(30 \,L )}{ R (27+273) K }$
$n_{1}=\frac{\left(15 \times 1.01 \times 10^{5}\right)\left(30 \times 10^{-3}\right)}{(8.3)(300)}$
$=18.253$
Initial mass of $O _{2}$ in cylinder $\left(m_{1}\right)=n_{1} M$
$=18.253 \times 32$ $=584.1 \,g$
Similarly,
$n_{2}=\frac{P_{2} V_{2}}{R T_{2}}$
$=\frac{\left(11 \times 1.01 \times 10^{5}\right)\left(30 \times 10^{-3}\right)}{(8.3)(290)}=13.847$
$m_{2}=n_{2} M=13.847 \times 32=443.1 g$
Mass of oxygen taken out $=m_{1}-m_{2}$
$=584.1 \,g -443.1 \,g =141 \,g$