Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An open organ pipe containing air resonates in fundamental mode due to a tuning fork. The measured values of length $l$ (in $cm$ ) of the pipe and radius $r$ (in $cm$ ) of the pipe are $l=94 \pm 0.1, r=5 \pm 0.05 .$ The velocity of the sound in air is accurately known. The maximum percentage error in the measurement of the frequency of that tuning fork by this experiment, will be

Waves

Solution:

$f=\frac{v}{2(l+2 e)}$ where $e=$ end correction $=0.6 r$
$\therefore f=\frac{v}{2(l+2 \times 0.6 r)}$
$=\frac{v}{2(l+1.2 r)}$
$\therefore \frac{\Delta f}{f}=\frac{\Delta v}{v}-\frac{\Delta(l+1.2 r)}{l+1.2 r}$
$=\frac{\Delta v}{v}-\frac{\Delta l+1.2 \Delta r}{l+1.2 r}$
Here $\frac{\Delta v}{v}=0$ (given)
$\frac{\Delta f}{f} \times 100=-\frac{\Delta l+1.2 \Delta r}{l+1.2 r} \times 100$
for maximum % error: $\Delta \lambda=0.1 \Delta r=0.05$
$\left(\frac{\Delta f}{f} \times 100\right)_{\max }=\frac{0.1+1.2 \times 0.05}{94+1.2 \times 5} \times 100$
$=0.16 \%$