Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An ideal gas is subjected to cyclic process involving four thermodynamic states. The amounts of heat $\left(Q\right)$ and work $\left(W\right)$ involved in each of these states are
$Q_{1}=6000\,J,Q_{2}=-5500\,J,Q_{3}=-3000\,J,Q_{4}=3500\,J,$
$W_{1}=2500\,J,W_{2}=-1000\,J,W_{3}=-1200\,J\&W_{4}=x\,J.$
The ratio of the net work done by the gas to the total heat absorbed by the gas is $n$ . The values of $x$ and $\eta$ respectively are

NTA AbhyasNTA Abhyas 2022

Solution:

From first law of thermodynamics
$Q=\Delta U+W$
or $\Delta U=Q - W$
Therefore, $\Delta U_1=Q_1-W_1=6000-2500=3500\, J$
$\Delta U _2= Q _2- W _2=-5500+1000=-4500 \,J $
$\Delta U _3= Q _3- W _3$
$=-3000+1200=-1800\, J$
$ \Delta U _4= Q _4- W _4=3500- x =0$
For cyclic process $\Delta U =0$
$\bullet 3500-4500-1800+3500-x=0$
or $x=700\, J$
Efficiency, $\eta=\frac{\text { output }}{\text { input }} \times 100$
$=\frac{W_1+W_2+W_3+W_4}{Q_1+Q_4} \times 100$
$=\frac{2500-1000-1200+700}{6000+3500} \times 100$
$=\frac{1000}{9500} \times 100$
$ \eta=10.5 \%$