Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An equation of the plane through the points (1, 0, 0) and (0, 2, 0) and at a distance $ \frac{6}{7} $ units from the origin is

KEAMKEAM 2011

Solution:

The equation of plane passing through (1, 0, 0) is $ a(x-1)+b(y-0)+c(z-0)=0 $ ...(i) Since, plane also passing through (0, 2, 0).
$ \Rightarrow $ $ a(0-1)+b(2-0)+c(0-0)=0 $
$ \Rightarrow $ $ -a+2b=0 $
$ \Rightarrow $ $ a=2b $ ...(ii) Given, distance from origin to plane (i) =6/7 $ \frac{|a(0-1)+b(0-0)+c(0-0)|}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}=\frac{6}{7} $
$ \Rightarrow $ $ \left| \frac{-a+0+0}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|=\frac{6}{7} $
$ \Rightarrow $ $ \frac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}=\frac{6}{7} $
$ \Rightarrow $ $ \frac{2b}{\sqrt{4{{b}^{2}}+{{b}^{2}}+{{c}^{2}}}}=\frac{6}{7} $ [from Eq.(ii)]
$ \Rightarrow $ $ 14b=6\sqrt{5{{b}^{2}}+{{c}^{2}}} $ Squaring on both sides;
$ \Rightarrow $ $ 196{{b}^{2}}=36(5{{b}^{2}}+{{c}^{2}}) $
$ \Rightarrow $ $ 196{{b}^{2}}=180{{b}^{2}}+36{{c}^{2}} $
$ \Rightarrow $ $ 16{{b}^{2}}=36{{c}^{2}} $
$ \Rightarrow $ $ 4b=6c $ ...(iii) From Eq. (ii) and Eq. (iii),
So, required equation of plane is,
or

Solution Image