Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the hyperbola $2 x^2-2 y^2=-1$ intersect orthogonally. If product of eccentricity of the ellipse and hyperbola is 1 , then $\frac{a^2}{b^2}$ is equal to

Conic Sections

Solution:

$\left(\frac{x_0}{y_0}\right)\left(\frac{-b^2 x_0}{a^2 y_0}\right)=-1$
image
$\frac{ a ^2}{ b ^2}=\frac{ x _0^2}{ y _0^2}=\frac{ x _0^2}{ x _0^2+\frac{1}{2}}<1$
eccentricity of ellipse
$e ^2=1-\frac{ a ^2}{ b ^2}=\frac{1}{2} \Rightarrow \frac{ a ^2}{ b ^2}=\frac{1}{2}$