Q. An ellipse has eccentricity $\frac{1}{2}$ and one focus at $S \left(\frac{1}{2}, 1\right)$. Its one directrix is common tangent (nearer to $S$ ) to the circle $x^2+y^2=1$ and $x^2-y^2=1$. The equation of the ellipse is
Conic Sections
Solution: