Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An electron from various excited states of hydrogen atom emit radiation to come to the ground state. Let $\lambda_n, \lambda_g$ be the de Broglie wavelength of the electron in the $n^{th}$ state and the ground state respectively. Let $\Lambda_n$ be the wavelength of the emitted photon in the transition from the $n^{th}$ state to the ground state. For large $n,$ ($A, B$ are constants)

JEE MainJEE Main 2018Atoms

Solution:

$P_{n}=\frac{h}{\lambda_{n}}, P_{g}=\frac{h}{\lambda_{g}}$
$k=\frac{P^{2}}{2 m}=\frac{h^{2}}{2 m \lambda^{2}}, E=-k=-\frac{h^{2}}{2 m \lambda^{2}}$
$E_{n}=-\frac{h^{2}}{2 m \lambda_{n}^{2}}, E_{g}=-\frac{h^{2}}{2 m \lambda_{g}^{2}}$
$E_{n}-E_{g}=\frac{h^{2}}{2 m}\left(\frac{1}{\lambda_{g}^{2}}-\frac{1}{\lambda_{n}^{2}}\right)=\frac{h c}{\Lambda_{n}}$
$\frac{h^{2}}{2 m}\left(\frac{\lambda_{n}^{2}-\lambda_{g}^{2}}{\lambda_{g}^{2} \lambda_{n}^{2}}\right)=\frac{h c}{\Lambda_{n}}$
$\Lambda_{n}=\frac{2 m c}{h}\left(\frac{\lambda_{g}^{2} \lambda_{n}^{2}}{\lambda_{n}^{2}-\lambda_{g}^{2}}\right)$
$\Lambda_{n}=\frac{2 m c \lambda_{g}^{2}}{h} \frac{\lambda_{n}^{2}}{\lambda_{n}^{2}\left(1-\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right)}$
$=\frac{2 m c \lambda_{g}^{2}}{h}\left[1-\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right]^{-1}$
$=\frac{2 m c \lambda_{g}^{2}}{h}\left[1+\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right]$
$=\frac{2 m c \lambda_{g}^{2}}{h}+\left(\frac{2 m c \lambda_{g}^{4}}{h}\right) \frac{1}{\lambda_{n}^{2}} $
$=A+\frac{B}{\lambda_{n}^{2}} $
$A= \frac{2 m c \lambda_{g}^{2}}{h}, B=\frac{2 m c \lambda_{g}^{4}}{h} $