Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An automobile enters a turn of radius $R$. If the road is banked at an angle of $45^{\circ}$ and the coefficient of friction is $1$, the minimum and maximum speed with which the automobile can negotiate the turn without skidding is

Laws of Motion

Solution:

$F.B.D$. for minimum speed (w.r.t. automobile):
image
$\Sigma f_{y'}=N-m g \cos \theta-\frac{m v^{2}}{R} \sin \theta=0 .$
$\Sigma f_{x'}=\frac{m v^{2}}{R} \cos \theta+\mu N-m g \sin \theta=0$
$\Rightarrow \frac{m v^{2}}{R} \cos \theta+\mu\left(m g \cos \theta+\frac{m v^{2}}{R} \sin \theta\right)-m g \sin \theta=0$
$\Rightarrow v^{2}=\frac{(\mu R g \cos \theta-R g \sin \theta)}{(\cos \theta+\mu \sin \theta)}$
for $\theta=45^{\circ}$ and $m=1 ; v_{\min }=\frac{R g-R g}{1+1}=0$
$F.B.D$. for maximum speed (w.r.t. automobile)
image
$\Sigma f_{x^{\prime}}=\frac{m v^{2}}{R} \cos \theta-m g \sin \theta$
$-\mu\left(m g \cos \theta+\frac{m v^{2}}{R} \sin \theta\right)=0$
for $\theta=45^{\circ}$ and $\mu=1$
$v_{\max }=\infty$ (infinite)