Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An asteroid is falling towards the centre of earth under the influence of earth's gravitational field. At $10 R_e\left(R_e=\right.$ radius of earth) it has speed of $12 \,km / s$. What will be the speed of the asteroids when it hits the earth's surface?

MHT CETMHT CET 2021

Solution:

According to conservation of energy,
Total energy of asteroid at $10 R_{\varepsilon}=$ Total energy of asteroid at surface of earth
$\Rightarrow U_1+K_1=U_2+K_2$
$ \Rightarrow \frac{-G M_{\varepsilon} m}{10 R_{\varepsilon}}+\frac{1}{2} m v_0^2=\frac{-G m_e m}{R_{\varepsilon}}+\frac{1}{2} m v^2$
$ \Rightarrow \frac{9}{10} \frac{G M_e m}{R_e}+\frac{1}{2} m v_0^2=\frac{1}{2} m v^2 $
$ \Rightarrow \frac{9}{10} \times \frac{2 G M}{R_e}+v_0^2=v^2 $
$ \Rightarrow v^2=\frac{9}{10}\left(v_e\right)^2+v_0^2$
where $v_e=$ escape velocity $=11.2 \,km / s$
$ \Rightarrow v^2=\frac{9}{10} \times(112)^2+(12)^2$
$ =\frac{9}{10} \times(11.2)^2+144=16\, kms ^{-1}$