Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. An alternating emf of angular frequency $\omega$ is applied across an inductance. The instantaneous power developed in the circuit has an angular frequency
image

Alternating Current

Solution:

$ V=V_{0} \sin \omega t$
If it is applied across an inductor, then $I$ lag by $\frac{\pi}{2} .$ Thus
$I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$
$P=V I=V_{0} I_{0} \sin \omega t \sin \left(\omega t-\frac{\pi}{2}\right)$
$=-\left(\frac{V_{0} I_{0}}{2}\right) 2 \sin \omega t \cos \omega t$
$P=-\left(\frac{V_{0} I_{0}}{2}\right) \sin (2 \omega t)$
$P=\frac{V_{0} I_{0}}{2} \sin (2 \omega t+\pi)$
$\Rightarrow P$ has an angular frequency of '$2 \omega^{\prime}$'.