Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. According to Heisenberg's uncertainty principle, the product of uncertainties in position and velocities for an electron of mass $ 9.1\times {{10}^{-31}}\,kg $ is:

BHUBHU 2004

Solution:

We will use formula $\Delta x \times \Delta p=\frac{h}{4 \pi}$ to solve problem.
$\Delta x \times \Delta p=\frac{h}{4 \pi} $
$\Delta x \times m \Delta v=\frac{h}{4 \pi} $
$\Delta x \times \Delta v=\frac{h}{4 \pi m} $
$\Delta x=$ uncertainty in position
$\Delta v=$ uncertainty in velocity
$h=$ Planck's constant
$=6.63 \times 10^{-34} \,kg\, m ^{2} \,s ^{-1} $
$m=$ mass of electron
$=9.1 \times 10^{-31} \,kg$
$\therefore {\Delta} x \times \Delta v=\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}} $
$=5.8 \times 10^{-5} \,m ^{2} \,s ^{-1}$