Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
ABCD is a trapezium such that AB and CD are parallel and BC ⊥ CD. If angle ADB = θ, BC =p and CD= q, then AB is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $ABCD$ is a trapezium such that $AB$ and $CD$ are parallel and $BC \bot CD.$ If $\angle ADB = \theta, BC =p$ and $CD= q$, then $AB$ is equal to
COMEDK
COMEDK 2013
Trigonometric Functions
A
$\frac{p^{2} +q^{2} \cos\theta}{p \cos \theta + q \sin \theta}$
28%
B
$\frac{p^{2} +q^{2} }{p^2 \cos \theta + q^2 \sin \theta}$
28%
C
$\frac{(p^{2} +q^{2}) \sin \theta}{(p \cos \theta + q \sin \theta)^2}$
22%
D
$\frac{(p^{2} +q^{2}) \sin \theta}{p \cos \theta + q \sin \theta}$
22%
Solution:
Using sine rule in triangle ABD, we get
$ \frac{AB}{\sin \theta} = \frac{BD}{\sin \left(\theta+\beta\right) } \Rightarrow AB =\frac{\sqrt{p^{2} + q^{2}} \sin \theta}{\sin \left(\theta+\beta\right)}$
As $\tan \beta = \frac{p }{q}$, we have $ \sin\left(\theta+\beta\right) = \sin \theta$
$ \cos\beta + \cos \theta \sin \beta $
$=\sin \theta \cdot \frac{q}{\sqrt{p^{2} +q^{2}} } + \cos \theta \cdot \frac{p}{\sqrt{p^{2} + q^{2}}} $
$= \frac{p \cos \theta +q \sin \theta}{\sqrt{p^{2} + q^{2}}} $
We then get $AB = \frac{\left(p^{2} + q^{2} \right) \sin \theta }{p \cos \theta +q \sin \theta }$