Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ABCD$ is a trapezium such that $AB$ and $CD$ are parallel and $BC$ $\perp$ $CD$, if $\angle $ $ADB = \theta, BC = p$ and $CD = q$, then $AB$ is equal to

JEE MainJEE Main 2013Trigonometric Functions

Solution:

$B D=\sqrt{p^{2}+q^{2}}$
$\angle A B P=\angle B D C=\alpha$
$\Rightarrow \angle D A B=\pi-(\theta+\alpha)$
$\tan \alpha=\frac{p}{q}$
$\triangle A B D$
$\frac{A B}{\sin \theta} =\frac{B D}{\sin (\pi-(\theta+\alpha))}$
$=\frac{B D}{\sin (\theta+\alpha)} $
$\therefore A B= \frac{B D \sin \theta}{\sin (\theta+\alpha)}$
$=\frac{B D^{2} \sin \theta}{B D \sin (\theta+\alpha)}=\frac{B D^{2} \sin \theta}{B D \sin \theta \cos x+B D \cos \theta \cos x}$
$=\frac{\left(P^{2}+\cos ^{2}\right) \sin \theta}{q \sin \theta +P \cos \theta} $

Solution Image Solution Image