Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. ABC is a right-angled triangle in which max =B C. If the position vectors of B and C are respectively 3 \hat{i}-2 \hat{j}+\hat{k} and 5 \hat{i}+\hat{j}-3 \hat{k} then
\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B A} \cdot \overrightarrow{B C}+\overrightarrow{C A} \cdot \overrightarrow{C B}=

AP EAMCETAP EAMCET 2020

Solution:

Given, B=3 \hat{i}-2 \hat{j}+\hat{k}
C=5 \hat{i}+\hat{j}-3 \hat{k}
B C=2 \hat{i}+3 \hat{j}-4 \hat{k}
\max \{A B, B C, A C\}=B C
\therefore B C is hypotenuse of \triangle A B C
image
\angle A=90^{\circ}
\therefore A B \cdot A C=0
B A \cdot B C=|B A| B C \mid \cos B
C A \cdot C B=|C A| C B \mid \cos C
\therefore A B-A C+B A-B C+C A-C B
=0+|B C|(|B A| \cos B+|C B| \cos C)
=0+|B C| B C \mid[\because By projection formula]
=|B C|^{2}-\left(\sqrt{(2)^{2}+3^{2}+4^{2}}\right)^{2}
=4+9 +16=29