Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
A weak monobasic acid is 1% ionized in 0.1 M solution at 25° C . The percentage of ionisation in its 0.025 M solution is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A weak monobasic acid is 1% ionized in 0.1 M solution at $ 25{}^\circ C $ . The percentage of ionisation in its 0.025 M solution is
KEAM
KEAM 2011
Equilibrium
A
1
B
2
C
3
D
4
E
5
Solution:
lionization of weak acid at $ {{C}_{1}}=0.1\text{ }M $ $ \begin{matrix} HA & {{H}^{+}} & (aq)+ & {{A}^{-}}(aq) \\ {{C}_{1}} & 0 & 0 & :Initial\,concentration \\ {{C}_{1}}(1-{{\alpha }_{1}}) & {{C}_{1}}{{\alpha }_{1}} & {{C}_{1}}{{\alpha }_{1}} & :Conc.\,at\,equilibrium \\ \end{matrix} $ $ \therefore $ $ {{K}_{a}}=\frac{{{C}_{1}}{{\alpha }_{1}}.{{C}_{1}}{{\alpha }_{1}}}{{{C}_{1}}(1-{{\alpha }_{2}})}=\frac{{{C}_{1}}{{\alpha }_{1}}}{(1-{{\alpha }_{2}})} $ $ ={{C}_{1}}\alpha _{1}^{2} $ $ (\because {{\alpha }_{2}}<<<1) $ lionization of weak acid $ {{C}_{2}}=0.025\text{ }M $ $ \begin{matrix} HA & {{H}^{+}} & (aq)+ & {{A}^{-}}(aq) \\ {{C}_{2}} & 0 & 0 & :Initial\,concentration \\ {{C}_{2}}(1-{{\alpha }_{2}}) & {{C}_{2}}{{\alpha }_{2}} & {{C}_{2}}{{\alpha }_{2}} & :Conc.\,at\,equilibrium \\ \end{matrix} $ $ \therefore $ $ {{K}_{\alpha }}=\frac{{{C}_{2}}{{\alpha }_{2}}.{{C}_{2}}{{\alpha }_{2}}}{{{C}_{2}}(1-{{\alpha }_{2}})}=\frac{{{C}_{2}}\alpha _{2}^{2}}{(1-{{\alpha }_{2}})} $ $ ={{C}_{2}}\alpha _{2}^{2} $ $ (\because {{\alpha }_{2}}<<<1) $ $ \because $ lionization constant of an acid is a constant and does not change with concentration. $ \therefore $ $ {{C}_{2}}\alpha _{1}^{2}={{C}_{2}}\alpha _{2}^{2} $ Or $ \alpha _{2}^{2}=\frac{{{C}_{1}}\alpha _{1}^{2}}{{{C}_{2}}}=\frac{0.1\times {{(1)}^{2}}}{0.025} $ Or $ \alpha _{2}^{2}=4 $ Or $ {{\alpha }_{2}}=2 $ $ \therefore $ The percentage of ionization of weak acid in 0.025 M solution is 2%.