Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A vessel, whose bottom has round holes with diameter of $ 1\,mm $ is filled with water. Assuming that surface tension acts only at holes. Then, the maximum height to which the water can be filled in vessel without leakage is (surface tension of water is $ 75\times 10^{-3}\,N/m$ and $g=10\, m/s^{2}$)

J & K CETJ & K CET 2004

Solution:

For no leakage, $h \rho g=\frac{2 T}{R}$
$\Rightarrow T=\frac{R h \rho g}{2}$
$\Rightarrow h=\frac{2 T}{R \rho g}$
Given, $T=75 \times 10^{-3} N / m,$
$g=10\, m / s ^{2},$
$R=0.5 \times 10^{-3} m$
$h=\frac{2 \times 75 \times 10^{-3}}{\left(0.5 \times 10^{-3}\right)(1000) 10}$
$\Rightarrow h=30 \times 10^{-3} \times 100\, cm$
$=3\, cm$