Let the vector $v$ make an angle $\alpha$ with each of
the three axes, then direction cosine of $v$ are
$<\cos \alpha, \cos \alpha, \cos \alpha> $
Also, $\cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow \cos ^{2} \alpha=1 / 3$
$\Rightarrow \cos \alpha=\pm \frac{1}{\sqrt{3}}$
Hence, direction cosine of $v$ are
$<\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}>$
or $<-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}> $