$\therefore $ Resultant vector $c = a + b$
$=(2 i -3 j -2 k )+(- i +2 j + k ) $
$=( i - j - k )$
$\therefore $ Unit vector of $c$
$=\frac{ i - j - k }{\sqrt{1^{2}+1^{2}+1^{2}}}=\left(\frac{ i - j - k }{\sqrt{3}}\right)$
$\therefore $ Required vector
$=\frac{7}{\sqrt{3}}( i - j - k )$