Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A variable force $F$ acts along the $x$ -axis given by $F=\left(3 x^{2} - 2 x + 1\right) \, N$ . The work done by the force when a particle of mass $100 \, g$ moves from $x=50 \, cm$ to $x=100 \, cm$ is

NTA AbhyasNTA Abhyas 2020Work, Energy and Power

Solution:

$x_{i n i t i a l}=50 \, cm$
$x_{f i n a l}=100 \, cm$
Therefore work done by the variable force,
$W=\displaystyle \int _{x_{i n i t i a l}}^{x_{f i n a l}} F . d x$
$W=\displaystyle \int _{0.5}^{1} \left(3 x^{2} - 2 x + 1\right) d x$
$W=\left[x^{3} - x^{2} + x\right]_{0.5}^{1}$
$W=\left(1 - 0 . 5^{3}\right)-\left(1 - 0 . 5^{2}\right)+\left(1 - 0.5\right)$
$W=0.875-0.75+0.5$
$W=0.625 \, J$