Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A unit vector perpendicular to the plane containing the vectors $\hat{i} + 2 \hat{j} + \hat{k}$ and $-2 \hat{i} + \hat{j} + 3\hat{k}$ is

KCETKCET 2019Vector Algebra

Solution:

$\hat{n}=\left(\frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|}\right)$
$\vec{a}\times\vec{b}=\left|\begin{matrix}\hat{i}&\hat{j}&\hat{k}\\ 1&2&1\\ -2&1&3\end{matrix}\right|=5\hat{i}-5\hat{j}+5\hat{k}$
$\left|\vec{a}\times\vec{b}\right|=5\sqrt{3}$
$\therefore \, \hat{n}=\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ or $ \hat{n}=\frac{-i+j-\hat{k}}{\sqrt{3}}$