Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A unit vector perpendicular to hati- hatj+ hatk and hati+ hatj- hatk is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A unit vector perpendicular to $ \hat{i}-\hat{j}+\hat{k} $ and $ \hat{i}+\hat{j}-\hat{k} $ is
J & K CET
J & K CET 2008
Vector Algebra
A
$ \frac{\hat{k}+\hat{i}}{\sqrt{2}} $
13%
B
$ \frac{\hat{j}+\hat{k}}{\sqrt{2}} $
34%
C
$ \frac{\hat{i}-\hat{k}}{\sqrt{3}} $
29%
D
$ \frac{\hat{j}-\hat{k}}{\sqrt{2}} $
24%
Solution:
Let $ \vec{a}=\hat{i}-\hat{j}+\hat{k} $ and $ \vec{b}=\hat{i}+\hat{j}-\hat{k} $
Now, $ \vec{a}\times \vec{b}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{matrix} \right| $
$ =\hat{i}(1-1)-\hat{j}(-1-1)+\hat{k}(1+1) $
$ =2\hat{j}+2\hat{k} $
$ \therefore $ Required unit vector
$ =\pm \frac{2\hat{j}+2\hat{k}}{\sqrt{4+4}} $
$ =\pm \frac{\hat{j}+\hat{k}}{\sqrt{2}} $