Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A uniform rod $A B$ of length $l$ rotating with an angular velocity $\omega$ while its centre moves with a linear velocity $v=\frac{\omega l}{6}$. If the end $A$ of the rod is suddenly fixed, the angular velocity of the rod will be:

System of Particles and Rotational Motion

Solution:

Applying conservation of angular momentum,
$I \omega+m v \frac{l}{2}=\frac{m l^{2}}{3} \omega^{\prime} $
$\frac{m l^{2}}{12} \omega+m\left(\frac{\omega l}{6}\right) \cdot \frac{l}{2}=\frac{m l^{2}}{3} \omega^{\prime}$
$\Rightarrow \frac{\omega}{12}+\frac{\omega}{12}=\frac{\omega^{\prime}}{3} $
$\Rightarrow \frac{\omega^{\prime}}{3}=\frac{2 \omega}{12} $
$ \Rightarrow \omega^{\prime}=\frac{\omega}{2}$