Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A uniform chain of length $l$ and mass $m$ lies on the surface of a smooth hemisphere of radius $R(R>l)$ with one end tied to the top of the hemisphere as shown in the figure. Gravitational potential energy of the chain with respect to the base of the hemisphere isPhysics Question Image

AP EAMCETAP EAMCET 2018

Solution:

image
Given,
Mass of chain is $m$
Length is 1
Radius of sphere is $R$
$
\begin{array}{l}
\Rightarrow h = R \sin \theta \\
\Rightarrow dl = R d \theta
\end{array}
$
The mass of dl length of the chain $dm = mdl$
Potential energy.
$
\begin{array}{l}
dU =( dm ) gh \\
\Rightarrow d U =\frac{ mdl }{1} gh =\frac{ mghdl }{1}=\frac{ mgh ^{2} \sin \theta d \theta}{1} \\
\Rightarrow dU =\frac{ mgR ^{2} \sin \theta d \theta}{1}
\end{array}
$
On Integrating
$
\begin{array}{l}
U =\int_{\theta}^{\frac{ x }{2} \frac{ mgR ^{2} \sin \theta d \theta}{1}} \\
U =-\frac{ mgR ^{2}}{1}[\cos \theta]_{\theta}^{\frac{\pi}{2}}=-\frac{ mgR ^{2}}{1}\left[\cos \left(\frac{\pi}{2}\right)-\cos \theta\right] \\
U =-\frac{ mgR ^{2}}{1} \cos \theta=\frac{ mgR ^{2}}{1} \sin \left(\frac{1}{ R }\right) \\
\text { Hence, potential energy is } \frac{ mgR ^{2}}{1} \sin \left(\frac{1}{ R }\right)
\end{array}
$