Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A two litre glass flask contains some mercury. It is found that at all temperatures the volume of the air inside the flask remains the same. The volume of the mercury inside the flask is ( $ \alpha $ for glass $ =9\times {{10}^{-6}}/C,\gamma $ for mercury $ =\text{ }1.8\times {{10}^{-4}}/{}^\circ C $ )

EAMCETEAMCET 2008Thermal Properties of Matter

Solution:

It is given that the volume of air in the flask remains the same. This means that the expansion in volume of the vessel is exactly equal to the volume expansion of mercury, ie, $ \Delta {{V}_{v}}=\Delta {{V}_{m}} $ or $ {{V}_{v}}{{\gamma }_{v}}\Delta T={{V}_{m}}{{\gamma }_{m}}\Delta T $ $ \therefore $ $ {{V}_{m}}=\frac{{{V}_{v}}{{\gamma }_{v}}}{{{\gamma }_{m}}}=\frac{{{V}_{v}}\times 3\alpha }{{{\gamma }_{m}}} $ $ (\because \,{{\gamma }_{v}}=3\alpha ) $ $ \Rightarrow $ $ {{V}_{m}}=\frac{2000\times 3\times 9\times {{10}^{-6}}}{1.8\times {{10}^{-4}}} $ $ =300\,cc $