Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A thin semi-circular ring of radius $r$ has a positive charge $q$ distributed uniformly over it. The net field $\vec{E}$ at the centre $O$ isPhysics Question Image

AIEEEAIEEE 2010Electric Charges and Fields

Solution:

Linear charge density $\lambda = \left(\frac{q}{\pi r}\right)$
$E = \int dE\,sin\,\theta \left(-\hat{j}\right) =\int \frac{K.dq}{r^{2}}sin\,\theta \left(-\hat{j}\right)$
$E = \frac{K}{r^{2}}\int\frac{qr}{\pi r} d\theta\,sin\,\theta \left(-\hat{j}\right)$
$= \frac{K}{r^{2}} \frac{q}{\pi } \int\limits^{\pi}_{0} \,sin\,\theta \left(-\hat{j}\right)$
$= \frac{q}{2\,\pi^{2}\,\varepsilon_{0}\,r^{2}} \left(-\hat{j}\right)$

Solution Image