Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A thin metal disc of radius of $0.25\, m$ and mass $2\, kg$ starts from rest and rolls down on an inclined plane. If its rotational kinetic energy is $4\, J$ at the foot of inclined plane, then the linear velocity at the same point, is in $m / s$

J & K CETJ & K CET 2007System of Particles and Rotational Motion

Solution:

Rotational kinetic energy $=\frac{1}{2} I \omega^{2}$
$\therefore $ Rotational $K E=\frac{1}{2}\left[\frac{1}{2} m r^{2}\right] \frac{v^{2}}{r^{2}}$
$\left(\text{where} I=\frac{1}{2} m r^{2}\right)$
$4=\frac{1}{2}\left[\frac{1}{2}(2) r^{2}\right] \frac{v^{2}}{r^{2}}$
$\Rightarrow v^{2}=8$
$v=2 \sqrt{2} m / s$