Q.
A telescoping series is a series whose general term $t_n$ can be written as $t_n=a_n-a_{n-1}$ i.e the difference of two consecutive terms of a sequence $\left(a_n\right)$.
The value of $\frac{\sec x}{2}+\frac{\sec x \sec 2 x}{2^2}+\frac{\sec x \sec 2 x \sec 2^2 x}{2^3}+\ldots \ldots 8$ terms $=\cos \theta\left(0< \theta< \frac{\pi}{2}\right)$ when $x=\frac{\pi}{512}$ then $\cos (1024 \theta)=$
JEE AdvancedJEE Advanced 2021
Solution: