Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A straight line through the vertex $P$ of a triangle PQR intersects the side $QR$ at the point $S$ and the circumcircle of the triangle PQR at the point $T$. If $S$ is not the centre of the circumcircle, then

JEE AdvancedJEE Advanced 2008

Solution:

image
$PS \times ST = QS \times SR$
$\frac{\frac{1}{ PS }+\frac{1}{ ST }}{2}>\sqrt{\frac{1}{ PS } \times \frac{1}{ ST }}$
$\Rightarrow \frac{1}{ PS }+\frac{1}{ ST }>\frac{2}{\sqrt{ QS \times SR }}$
$\frac{ QS + SR }{2}>\sqrt{ QS \times SR }$
$\frac{ QR }{2}>\sqrt{ QS \times SR } $
$\Rightarrow \frac{1}{\sqrt{ QS \times SR }}>\frac{2}{ QR }$
$\Rightarrow \frac{1}{ PS }+\frac{1}{ ST }>\frac{4}{ QR }$