Q.
A stone of mass $m$ tied to the end of a string revolves in a vertical circle of radius $R$. The net forces at the lowest and highest points of the circle directed vertically downwards are
Lowest Point
Highest Point
(a)
$mg-T_{1}$
$mg+T_{2}$
(b)
$mg +T_{1}$
$mg-T_{2}$
(c)
$mg+T_{1}$ $-\left(\frac{mv_{1}^{2}}{R}\right)$
$mg-T_{2}$ $+\left(\frac{mv_{2}^{2}}{R}\right)$
(d)
$mg-T_{1}$ $-\left(\frac{mv_{1}^{2}}{R}\right)$
$mg+T_{2}$ $+\left(\frac{mv_{2}^{2}}{R}\right)$
$T_{1}$ and $v_{1}$ denote the tension and speed at the lowest point. $T_{2}$ and $v_{2}$ denote corresponding values at the highest point.
Lowest Point | Highest Point | |
---|---|---|
(a) | $mg-T_{1}$ | $mg+T_{2}$ |
(b) | $mg +T_{1}$ | $mg-T_{2}$ |
(c) | $mg+T_{1}$ $-\left(\frac{mv_{1}^{2}}{R}\right)$ | $mg-T_{2}$ $+\left(\frac{mv_{2}^{2}}{R}\right)$ |
(d) | $mg-T_{1}$ $-\left(\frac{mv_{1}^{2}}{R}\right)$ | $mg+T_{2}$ $+\left(\frac{mv_{2}^{2}}{R}\right)$ |
Laws of Motion
Solution: