Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A standing wave pattern is formed on a string. One of the waves is given by equation $y_{1}=a \cos \left(\omega t-k x+\frac{\pi}{3}\right)$ then the equation of the other wave such that at $x=0$ a node is formed.

Waves

Solution:

At $x=0$ the phase difference should be $\pi$.
Thus, the correct option is (d).
Alternate solution:
$y_{2}= a \cos \left(\omega t +k x+\phi_{0}\right)$
$\therefore y= y_{1}+y_{2}=a \cos \left(\omega t-k x+\frac{\pi}{3}\right)$
$+a \cos \left(\omega t +k x+\phi_{0}\right)$
$=2 a \cos \left[\omega t+\frac{\frac{\pi}{3}+\varphi_{0}}{2}\right] \times \cos \left[k x+\frac{\varphi_{0}-\frac{\pi}{3}}{2}\right]$
$y=0$ at $x=0$ for any $t$
$\Rightarrow k x+\frac{\varphi_{0}-\frac{\pi}{3}}{2}=\frac{\pi}{2}$ at $x=0$
$\therefore \phi_{0}=\frac{4 \pi}{3}.$
Hence $y_{2}=a \cos \left(\omega t +k x+\frac{4 \pi}{3}\right)$