Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A spring of spring constant $5 \times 10^3 Nm^{-1}$ is stretched initially by 5 cm from the unstretched position. Then the work required to stretch it further by another 5 cm is

MP PMTMP PMT 2008Work, Energy and Power

Solution:

Work done $W_1=\frac{1}{2}k \times x^2_1$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{1}{2}\times5\times10^3 \times(5\times10^{-2})^2$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 6.25 J$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, W_2=\frac{1}{2}k(x_1+x_2)^2$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{1}{2} \times5\times10^3 (5\times10^{-2}+5\times 10^{-2})^2$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =25 J$
Net work done $\, \, \, \, \, \, \, \, \, \, \, = W_2 - W_1$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =25-6.25$
$\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 18.75 J =18.75 N-m$