Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A sphere and a cube of same material and same total surface area are placed in the same evacuated space turn by turn after they are heated to the same temperature. Find the ratio of their initial rates of cooling in the enclosure.

NTA AbhyasNTA Abhyas 2022

Solution:

Rate of emission of energy $= \sigma \text{T}^{4} \text{S}$
Let m1 be the mass of sphere, C is specific heat and $\left(\text{d} \theta / \text{dt}\right)$ , the rate of cooling.
For sphere
$\sigma \left(\text{T}\right)^{4} \text{S} = \left(\text{m}\right)_{1} \text{C} \left(\frac{\text{d} \theta }{\text{dt}}\right)_{\text{S}}$ ...(i)
Let m2 be the mass of cube, C its specific heat and $\left(\text{d} \theta / \text{dt}\right)$ , the rate of cooling
For cube
$\sigma \left(\text{T}\right)^{4} \text{S} = \left(\text{m}\right)_{2} \text{C} \left(\frac{\text{d} \theta }{\text{dt}}\right)_{\text{C}}$ ...(ii)
From Eqs.(i) and (ii)
$\frac{\left(\text{d} \theta / \text{dt}\right)_{\text{s}}}{\left(\text{d} \theta / \text{dt}\right)_{\text{c}}} = \frac{\left(\text{m}\right)_{2}}{\left(\text{m}\right)_{1}}$
$=\frac{\left(\text{a}\right)^{3} \rho }{\left(4 / 3\right) \pi \left(\text{r}\right)^{2} \rho }$
where a is the side of cube and r is the radius of sphere, $\rho $ is the density.
Required ratio $ \frac{\text{R}_{\text{s}}}{\text{R}_{\text{c}}} = \frac{3 \text{a}^{3}}{4 \pi \text{r}^{3}}$
But since $\text{S }$ (surface area) is the same,
$6 \text{a}^{2} = 4 \pi \text{r}^{2}$
or $\left(\text{a}\right)^{2} = \left(2 / 3\right) \pi \left(\text{r}\right)^{2}$
$∴ \, \, \, \frac{\left(\text{R}\right)_{\text{s}}}{\left(\text{R}\right)_{\text{c}}} = \frac{3 \left(2 \pi \left(\text{r}\right)^{2} / 3\right)^{3 / 2}}{4 \pi \left(\text{r}\right)^{3}} = \frac{2 \pi \sqrt{2 \pi }}{\sqrt{3} \left(4 \pi \right)}$
$= \sqrt{\frac{2 \pi }{1 2}} = \sqrt{\frac{\pi }{6}}$