Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A solution containing a mixture of $0.05\, M\, NaCl$ and $0.05 \,M\, Nal$ is taken. $\left(K_{ sp }\right.$ of $AgCl =10^{-10}$ and $K_{ sp }$ of $\left.AgI =4 \times 10^{-16}\right)$. When $AgNO _3$ is added to such a solution:

Equilibrium

Solution:

$\underset{0.05\, M}{NaCl} + \underset{0.05\,M}{NaI}$
When $AgNO _3$ is added, find the minimum concentration of $Ag ^{\oplus}$ required to start precipitation
$\left[ Ag ^{\oplus}\right]_{ AgCl }=\frac{K_{\text {sp }( NaCl )}}{\left[ Cl ^{\ominus}\right]}=\frac{10^{-10}}{0.05}=2 \times 10^{-9} M $
$\left[ Ag ^{\oplus}\right]_{ AgI }=\frac{K_{\text {sp }( Agl )}}{\left[ I ^{\ominus}\right]}=\frac{4 \times 10^{-16}}{0.05}=8 \times 10^{-15} M $
Since, there is a very high difference between the minimum concentration of $Ag ^{\oplus}$, precipitation is selective and AgI will precipitate first