Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A solid sphere of radius R carries a uniform volume charge density p. The magnitude of electric field inside the sphere at a distance r from the centre is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A solid sphere of radius $R$ carries a uniform volume charge density $p$. The magnitude of electric field inside the sphere at a distance $r$ from the centre is :
VITEEE
VITEEE 2016
A
$\frac{ rp }{3 \varepsilon_{0}}$
37%
B
$\frac{R \rho}{3 \varepsilon_0}$
28%
C
$\frac{ R ^{2} p }{ r \varepsilon_{0}}$
17%
D
$\frac{ R ^{3} p }{ r ^{2} \varepsilon_{0}}$
17%
Solution:
Given, solid sphere,
Radius $=R$
Volume charge density $=p$
charge $=q$
distance from centre $=r$
To find Electric Field, $E$.
We know,
Electric field ( $E$ ),
$E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q r}{R^{3}}\,\,\, ...(1)$
(above is formula for $E$ inside the sphere)
$\therefore E=\frac{q}{\frac{4}{3} \pi R^{3}} \times \frac{r}{3 \varepsilon_{0}}$
$\left[\right.$ Reurranging $\left.e q^{n}(1)\right]$
We know, volume $\Rightarrow V=\frac{4}{3} \pi R^{3}\,\,\, ...(2)$
charge density $\Rightarrow p=\frac{q}{V}\,\,\,...(3)$
$\therefore P=\frac{q}{\frac{4}{3} \pi R^{3}} \,\,\,[$ from (2) $f(3)]$
$\therefore E=\frac{p r}{3 \varepsilon_{0}}$