Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A small satellite of mass $m$ is revolving around the earth in a circular orbit of radius $r_{0}$ with speed $v_{0}$ . At a certain point in its orbit, the direction of motion of satellite is suddenly changed by angle $\theta =\left(cos\right)^{-1}\left(\frac{3}{5}\right)$ by turning its velocity vector in the same plane of motion, such that the speed remains constant. The satellite consequently goes into an elliptical orbit around earth. The ratio of speed at perigee to speed at apogee is

NTA AbhyasNTA Abhyas 2022

Solution:

Using conservation of angular momentum about $O$.
$ mV _{ P } r _{ P }= mV _{ A } r _{ A }= mV _0 r _0 \cos \theta$
$ V _{ A } r _{ A }= V _{ P } r _{ P }=\frac{3 v _0 r _0}{5} \ldots . . . \text { (1) }$
using conservation of energy
$\frac{1}{2} mV _{ A }^2+\frac{- GMm }{ r _{ A }}=\frac{- GMm }{ r _0}+\frac{1}{2} mV _0^2$
$\Rightarrow \frac{9 V _0^2 r _0^2}{50 r _{ A }^2}-\frac{ v _0^2 r _0}{ r _{ A }}+\frac{ v _0^2}{2}=0 $
Let $\frac{ r _0}{ r _{ A }}= x$
This is a quadratic equation in $\frac{r_0}{r_a}$
$\Rightarrow 9 x^2-50 x+25=0 \Rightarrow x=5 \text { or } x=\frac{5}{9}$
Solution

$\Rightarrow r_{A}=\frac{9}{5}r_{o} \, \ldots \ldots .\left(1\right)$
$r_{p}=\frac{r_{o}}{5} \, \, \ldots \ldots .\left(\right.2\left.\right)$
using (1) & (2)
$\Rightarrow \frac{\text{V}_{\text{P}}}{\text{V}_{\text{A}}} = \frac{\text{r}_{\text{A}}}{\text{r}_{\text{P}}} = 9$