Q.
A small circular loop of area $A$ and resistance $R$ is fixed on a horizontal $x y$-plane with the center of the loop always on the axis $\hat{n}$ of a long solenoid. The solenoid has $m$ turns per unit length and carries current $I$ counterclockwise as shown in the figure. The magnetic field due to the solenoid is in $\hat{ n }$ direction. List-I gives time dependences of $\hat{ n }$ in terms of a constant angular frequency $\omega$. List-II gives the torques experienced by the circular loop at time $t=\frac{\pi}{6 \omega}$, Let $\alpha=\frac{A^2 \mu_0^2 m^2 I^2 \omega}{2 R}$.
Column I
Column II
I
$\frac{1}{\sqrt{2}}(\sin \omega t \hat{j}+\cos \omega t \hat{k})$
P
$0$
II
$\frac{1}{\sqrt{2}}(\sin \omega t \hat{i}+\cos \omega t \hat{j})$
Q
$-\frac{\alpha}{4} \hat{i}$
III
$\frac{1}{\sqrt{2}}(\sin \omega t \hat{i}+\cos \omega t \hat{k})$
R
$\frac{3 \alpha}{4} \hat{i}$
IV
$\frac{1}{\sqrt{2}}(\cos \omega t \hat{i}+\sin \omega t \hat{k})$
S
$\frac{\alpha}{4} \hat{j}$
T
$-\frac{3 \alpha}{4} \hat{i}$
Which one of the following options is correct?
Column I | Column II | ||
---|---|---|---|
I | $\frac{1}{\sqrt{2}}(\sin \omega t \hat{j}+\cos \omega t \hat{k})$ | P | $0$ |
II | $\frac{1}{\sqrt{2}}(\sin \omega t \hat{i}+\cos \omega t \hat{j})$ | Q | $-\frac{\alpha}{4} \hat{i}$ |
III | $\frac{1}{\sqrt{2}}(\sin \omega t \hat{i}+\cos \omega t \hat{k})$ | R | $\frac{3 \alpha}{4} \hat{i}$ |
IV | $\frac{1}{\sqrt{2}}(\cos \omega t \hat{i}+\sin \omega t \hat{k})$ | S | $\frac{\alpha}{4} \hat{j}$ |
T | $-\frac{3 \alpha}{4} \hat{i}$ |
JEE AdvancedJEE Advanced 2022
Solution: