Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A sinusoidal voltage of peak value $283\, V$ and angular frequency $320/s$ is applied to a series $LCR$ circuit. Given that $R = 5 \, \Omega , L = 25 \, mH $ and $C=1000 \, \mu F$. The total impedance, and phase difference between the voltage across the source and the current will respectively be :

JEE MainJEE Main 2017Alternating Current

Solution:

$e_{0}=283$ volt $\omega=320$
$x_{L}=320\times25\times10^{-3}=8\,\Omega$
$x_{C}=\frac{1}{\omega C}=\frac{1}{320\times1000\times10^{-6}}$
$=\frac{1000}{320}=3.1\,\Omega$
$R=5\,\Omega$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{50}=7\,\Omega$
$tan\,\phi=\frac{X_{L}-X_{C}}{R}$
$=1\,\phi=45^{\circ}$