Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A series $L-R$ circuit is connected to a battery of emf $V$ If the circuit is switched on at $t =0$, then the time at which the energy stored in the inductor reaches $\left(\frac{1}{ n }\right)$ times of its maximum value, is :

JEE MainJEE Main 2020Alternating Current

Solution:

$U _{\max }=\frac{1}{2} L I _{\text{ max }}^{2}$
$i = I _{\max }\left(1- e ^{- Rt / L }\right)$
For $U$ to be $\frac{U_{\max }}{n} $ ; i has to be $\frac{I_{\max }}{\sqrt{n}}$
$\frac{ I _{\max }}{\sqrt{ n }}= I _{\max }\left(1- e ^{- Rt / L }\right)$
$e ^{- Rt / L }=1-\frac{1}{\sqrt{ n }}=\frac{\sqrt{ n }-1}{\sqrt{ n }}$
$-\frac{ Rt }{ L }=\ln \left(\frac{\sqrt{ n }-1}{\sqrt{ n }}\right)$
$t =\frac{ L }{ R } \ln \left(\frac{\sqrt{ n }}{\sqrt{ n }-1}\right)$