Orbital velocity of the satellite is $v=\sqrt{\frac{G_E}{r}}$ where $M_E$ is the mass of the earth
Kinetic energy, $K =\frac{1}{2} mv ^2=\frac{ GM _{ E } m }{2 r }$
where $m$ is the mass of the satellite. $K \propto \frac{1}{ r }$
Hence, option (a) is incorrect. Angular momentum, $L = mvr$
$
=m \sqrt{\frac{ GM _{ E }}{ r } r }
$
$
=m \sqrt{G_{ E } r } \therefore L \propto \sqrt{ r }
$
Hence, option (b) is incorrect.
Linear momentum, $p=m v=m \sqrt{\frac{ GM _{ E }}{ r }} \therefore P \propto \frac{1}{\sqrt{ r }}$
Hence, option (c) is incorrect.
Frequency of revolution, $v=\frac{1}{ T }=\frac{1}{2 \pi} \sqrt{\frac{ GM _{ E }}{ r ^3}}$
$
\therefore v \propto \frac{1}{ r ^{3 / 2}}
$