Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A sample of a radioactive substance undergoes $80 \%$ decomposition in $345$ minutes. Its half life is ___ minutes.

Chemical Kinetics

Solution:

Radioactive decomposition is first order reaction
So, $K=\frac{2.303}{t} \log \frac{a}{a-x}=\frac{2.303}{t} \log \frac{100}{100-x}$
$\therefore t_{1 / 2}=\frac{0.693}{ K }$
$\frac{0.693}{t_{1 / 2}}=\frac{2.303}{345} \log \frac{100}{100-80}$
$\frac{0.693}{t_{1 / 2}}=\frac{2.303}{345} \log \frac{100}{20}$
$\frac{0.693}{t_{1 / 2}}=\frac{2.303}{345} \log 5$
$\therefore [0.693=2.303 \times \log 2]$
So, $\frac{2.303 \times \log 2}{ t _{1 / 2}}=\frac{2.303}{345} \log 5$
$t_{1 / 2}=345 \times \frac{\log 2}{\log 5}$