Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A ray of light is incident on a surface of glass slab at an angle $45^{\circ} .$ If the lateral shift produced per unit thickness is $\frac{1}{\sqrt{3}} m$, the angle of refraction produced is

ManipalManipal 2009Ray Optics and Optical Instruments

Solution:

Here, angle of incidence $i=45^{\circ}$
image
$\frac{\text { Lateral shift }( d )}{\text { Thickness of glass slab }( t )}=\frac{1}{\sqrt{3}}$
Lateral shift $d=\frac{t \sin \delta}{\cos r}=\frac{t \sin (i-r)}{\cos r}$
$\Rightarrow \frac{d}{t}=\frac{\sin (i-r)}{\cos r}$
or $\frac{d}{t}=\frac{\sin i \cos r-\cos i \sin r}{\cos r}$
or$\frac{d}{t}=\frac{\sin 45^{\circ} \cos r-\cos 45^{o} \sin r}{\cos r}$
$=\frac{\cos r-\sin r}{\sqrt{2} \cos r}$
or $\frac{d}{t}=\frac{1}{\sqrt{2}}(1-\tan r)$
or $\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{2}}(1-\tan r)$
or $\tan r=1-\frac{\sqrt{2}}{\sqrt{3}}$
or $r=\tan ^{-1}\left(1-\frac{\sqrt{2}}{\sqrt{3}}\right)$